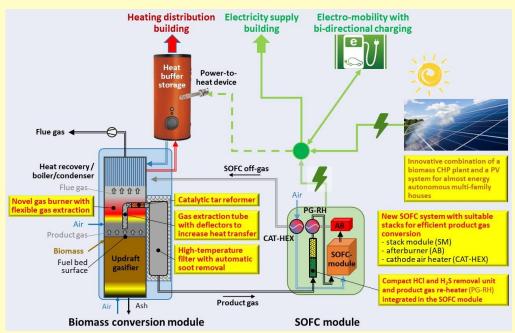


T. Brunner^{*)}, I. Obernberger, S. Megel, A. Seidl, F. Silversand, A. Morosanu, T. Götz, L. Conti ^{*)} BIOS BIOENERGIESYSTEME GmbH, Hedwig-Katschinka-Straße 4, A-8020 Graz, Austria, www.bios-bioenergy.at

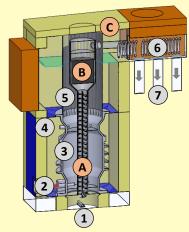
Introduction and objectives


- The project aims at the development of an innovative system for heat and electricity supply to achieve an almost energy autonomous multi-family building.
- The system is based on the combination of a biomass CHP plant, a PV system and appropriate heat and electricity storage technologies.
- Novel biomass CHP system based on pellets updraft gasification with dual product gas utilization:
 - Direct combustion for flexible heat generation
 - As fuel in a solid oxide fuel cell (SOFC) for electricity and heat generation

Approach

- 15 kW (fuel power related to the NCV) fixed-bed updraft gasifier operated with humidified air.
- A part of the product gas is burned in a gas burner.
- The remaining product gas is extracted through a pipe passing through the combustion chamber and is heated-up to 950°C to facilitate thermal tar reforming followed by a catalytic tar reformer operating at about 900°C.
- High-temperature particle filter for soot precipitation and HCl/H₂S-removal reactor (dry sorption reactor).
- The cleaned product gas passes through the SOFC system for electricity production. The achievable stack efficiency shall be up to 44% (related to the NCV of the product gas).
- Hot off-gases from the SOFC-system are returned to the biomass conversion module for heat recovery. The overall efficiency of the CHP system shall be close to 90% (related to the NCV of the fuel).

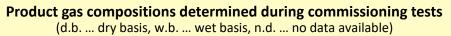
Current status

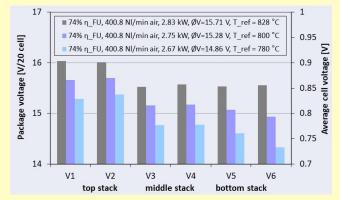

- A first testing plant with a fuel power of 15 kW has been designed and constructed.
- Commissioning tests with the gasifier, the gas burner and the product gas extraction system as well as with the stack module have successfully been performed.
- Test runs with the testing plant will start in July 2024.

Wuppertal

INERGIÓ

Basic scheme of the Micro-Bio-CHP concept




Flue gas pathway

- 1. Gasifier bed surface
- 2. Secondary air nozzles
- 3. Secondary combustion zone
- 4. Tertiary air nozzles
- Tertiary combustion zone
 Evaporator coils (steam pi
 - Evaporator coils (steam production for primary air and product gas humidification) Inlet to convective heat exchanger
- Product gas extraction for utilisation in the SOFC module
- A Product gas extraction pipe including the thermal tar reforming section
- B Catalytic tar reformer (CTR)
- C Product gas exit to the high-temperature particle filer

Biomass conversion module with staged gas burner and product gas extraction with integrated tar reforming

		At extraction	Upstream	Downstream	Downstream
		pipe inlet	CTR	CTR	particle filter
CH ₄	[vol% w.b.]	1-1.5	3.14	0.23	0.41
CO2	[vol% w.b.]	7 – 8	7.66	10.99	11.28
CO	[vol% w.b.]	8-11	15.82	16.69	16.05
H ₂ O	[vol% w.b.]	44 – 47	37.74	23.04	23.04
H ₂	[vol% w.b.]	8-10	9.52	28.15	28.97
N ₂	[vol% w.b.]	18 - 20	23.80	20.81	20.08
Dust content	[mg/Nm ³ d.b.]	n.d.	21.3	5.4	0.3
Gravimetric tars	[g/Nm ³ d.b.]	100	1.28	0.34	0.23
NCV	[kJ/kg w.b]	5.20	5.19	5.94	6.01

Package voltages of the SOFC stack unit at different air outlet temperatures

Explanations: Test stand operation with simulated product gas η_FU : fuel utilization V1-V6: cell package number T_ref: air outlet temperature

μ ΒΙΟ СΗΡ